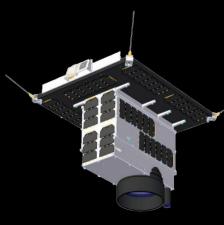


New Ground Station and X-band transmitter for Real Time Earth Observation by MS Camera and HD Video

T. Rodič, H. Fröhlich, L. Pavlovič, J. Hertig, P. Ward

consortium

UL-NTF coordinator Materials, structure, virtual models/


Research institutions:

UL-FMF Astrophysics, meteorology

UL-FE Communication, control, processing

IJS Electornics ceramics

ZRC-SAZU Remote sensing

ZAVAROVALNICA MARIBOR End-user of space technologies **Companies:**

DEWESOFT Telemety, data aquisition

SINERGISE GIS applications

TIC LENS Laser technologis

IMPOL Superplastic Al alloys

ISKRA TELA Antenna systems

•••

our RTD programme

SCIENCE	TECHNOLOGIES	APPLICATIONS
wp1: remote sensing	wp4: satellite technology	wp7: international missions
		var idar 200
wp2: meteorology	wp5: communications	wp8: terrestrial applications
wp3: astrophysics	wp6: multidisciplinary lab	wp9: dissemination
• •	••••	

concept for slovenian micro satellite

70 kg > satellite for earth monitoring and observation.

2.8 m gsd from a reference altitude of 600 km

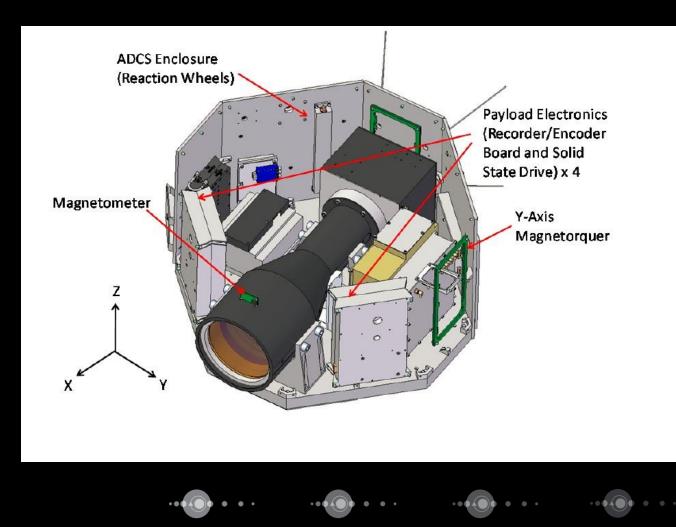
four spectral channels

(420–520 nm, 535–607 nm, 634–686 nm, and 750–960 nm). high-definition video at 1920 by 1080 pixels. real-time imaging and video streaming over slovenia

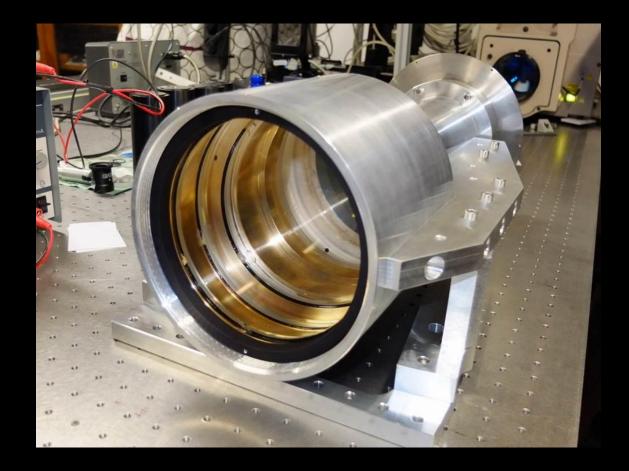
three-axis stabilized bus

50 mbps x-band downlink

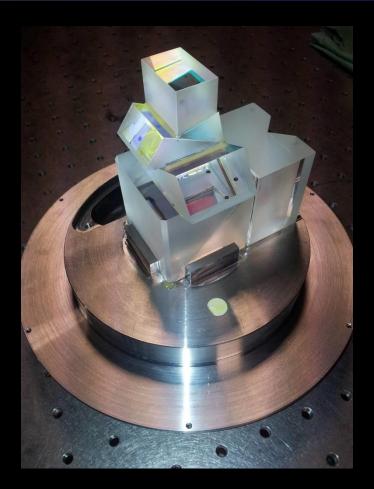
279.4 gb of on-board storage,power system generating 55 w300 wh li-ion battery.



remote sensing micro satellite

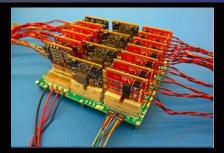

••••

telescope of the slovenian micro satellite

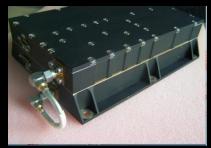


prism for multispectral images

vibration testing of the optical system



components


primary payload

power system

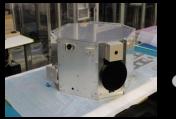
reaction wheels

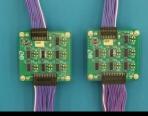
X-band

S-band

secondary payload

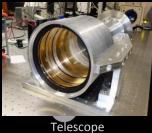
star tracker


structure


UHF

sun sensors

Structure



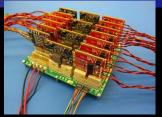
Serial Interface Boards



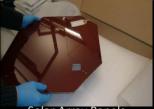
Magnetometer

UHF Receiver

OBC


S-band Transmitter

Ethernet Switch


X_band Transmitter

Power System

X-band Interface Board

Solar Array Panels

Rate Sensors

Reaction Wheels

Magnetorquers

HRS-PAN Camera

Star Tracker

HRS-MS Camera

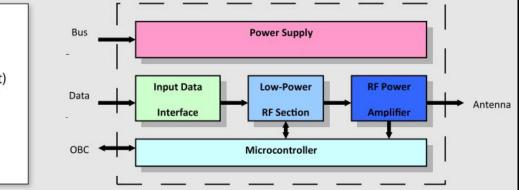
Sun Sensors

HR-HD Camera

GPS

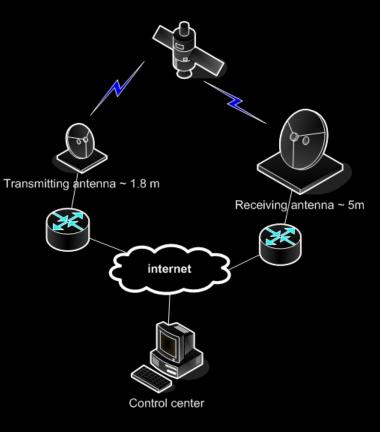
LR-HD Camera

Features


- RF output power: min 1 W (typically 2 W)
- O-QPSK modulation
- frequency range X: 8.025 GHz 8.400 GHz (programmable)
- data transfer rate: up to 50 Mbit/s
- dimensions: 100 x 120 x 45 mm (in development is also a CubeSat version: 95 x 95 x 50 mm)
- low power consumption: up to 15 W (for CubeSats up to 10 W)
- supply voltage: +18 V to +36 V

Housing (left) and block diagram (right) of the X-band transmitter.

X-band transmitter for small satellites


• • 13

ground control station

Transmitting antenna reflector 1,8 m, 40dB gain, X-Y positioning, frequency bands VHF/UHF/S (Opetaronal since 2011)

Receiving antenna

reflector 5m, 40-50 dB gain, X-Y positioning, monopulse tracking system, horn antennas for primary feed: left-circular and right circular polarisation, frequency bands L/S/C/X/Ku/Ka, G/T 20 dB/K (installed in 2012)

Ground Station 2012

Pomjanu near Koper

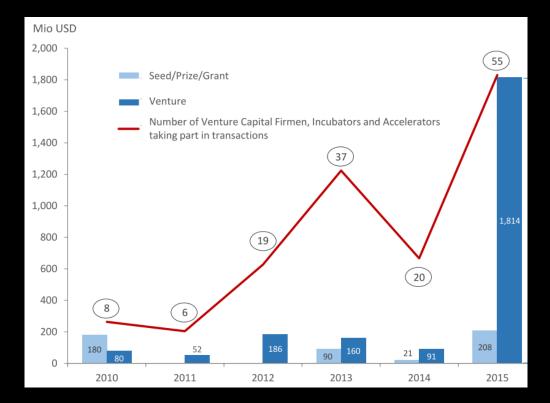
Ground Station 2012

Pomjanu near Koper

2013/2014 Contract to support Planet Labs constellation

2014/2015 Design of a new Ground Station optimised for

NewSpace (mega constellations, new countries)



NewSpace Missions

NewSpace Missions

- Remote Sensing
 - Optical (19)
 - SAR (7)
- Communication/ Data Relay Satellites (11)
- Atmosphere/Weather (4)
- Internet of Things (13)
- AIS (6)
- NewSat Launchers (14)

48 Constellations are planned by 2018

3290 satellites require 768 antennas if they need one pass per orbit

- 1.4 Million passes per month
- 60 daily passes per antenna

Year	2015	2016	2017	2018
No. of Satellites	131	427	1221	3290

3290 satellites*14 passes/day) / 60 daily passes per antenna

≈ 768 antennas

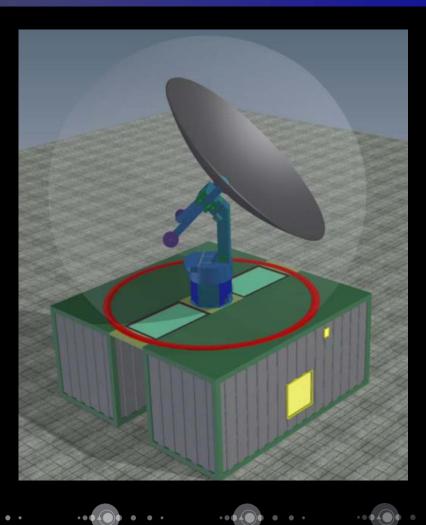
Design goals I.

- Feed/auto track selection.
- Decrease positioner cost and increase performance and reliability.
 - Commercial Off the Shelf parts (COTS).
 - Eliminate complex servo systems.
 - Eliminate bias-drive systems.
 - Use high gear reduction systems to increase precision.

- Two axis vs three axis system.
- High integration and reducing parts count.
- COTS ACU.
- SDR.

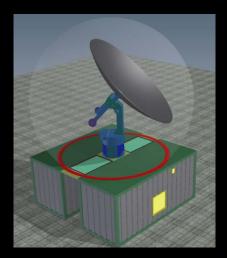
Design goals II.

- High mechanical accuracy.
- Support for LEO and
- decaying orbits.
- Web based.
- Interoperability.
- Minimum setup time.
- Weight.


- Power consumption.
- Radomes.
- Reflector.
- Portable/Rapid installation.
- Mobile.
- Producible.

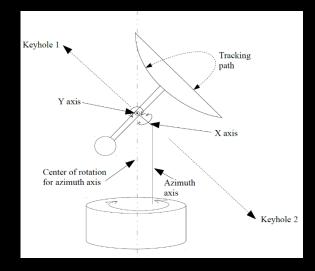
••••

Concept



Low loss radome

No frequency tuning X to Ku/Ka bands



Highly accurate positioner

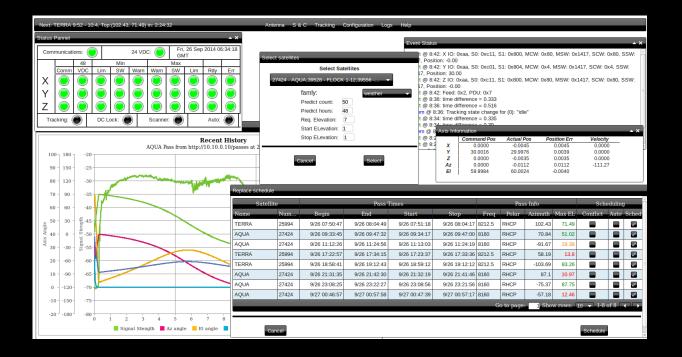
Full hemispherical coverage No keyholes

Single motor per axis Zero backlash gear drives High gear reduction Highly integrated COTS

STREAM innovations

- New thin wall membrane Radome
- New prime focus Monopulse feed
- New never before used Geometry
- New cascaded axis gear reduction system
- Very highly integrated design using COTS components
- New high frequency signal acquisition methodology
- New Carbon fiber reflector
- Optimized CNC Precision Production techniques
- New Antenna Control Unit (ACU

Dish diameter: Radome loss: Pointing accuracy: Max. wind: Power (antenna): Max. axial tr. speed: Max axial acc.: 3.7 – 9 m < 0.2 dB (up to 40 GHz) < 0.01 degree 250 km/h (operational) < 1kW 3.6 deg/s 3 deg/s²


•••

Easy to integrate into GS networks

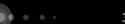
Published API to support third party software

H2020 Space Info Day, Ljubljana, april 2016

Sodelovanje s slovensko industrijo

Thermal Vacuum Chamber

....


••••

Conclusion

Extremely low-loss radome Full hemispherical coverage Fully automated High precision LEO tracking Ultra wide-band radome Ka/Ku-band ready No keyholes Easy to integrate in the network Published API Carbon fibre dish

